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Abstract
I study, by Monte Carlo simulations, the features of a model of catalytic reaction
in which the dynamics of the slowest step of the reaction process is specified by
a time random walk (TRW). This TRW aims at reproducing the actual dynamics
of an adsorbed atom escaping out of a potential well.

PACS numbers: 05.40.-a, 02.50.Ga, 31.70.Hq, 82.20.-w

There has been sustained interest in a variety of kinetic reaction models which capture the
major features of surface-catalysed reactions like the oxidation of carbon monoxide on platinum
surfaces. Despite their simplicity, these models exhibit such interesting behaviour as bistability
or irreversible phase transitions. They allow study of the complex dynamics of catalytic
reactions, more specifically the study of the reaction noise or of the propagation of chemical
waves between a stable phase and a less stable one. They pave the way to the elucidation
of pattern formation. Reaction noise and patterns have been experimentally observed [1].
In addition, these models turn out to be simple enough to be solved, exactly or using some
approximations; these solutions provide a deep insight into the dynamics of catalytic reactions.
Finally, these models exhibit scaling properties which are of interest in their own right [2].

One of the simplest models in this field is the monomer–monomer model introduced by
Fichthorn, Gulari and Ziff (FGZ) [3]. This model, studied by Monte Carlo simulations, was
solved by Clément et al [4]. This model involves absorption and desorption of two monomers,
A and B, on the sites of a lattice. When an A-occupied site is a nearest neighbour of a
B-occupied site, A and B react and the emptied sites are randomly occupied either by A or
by B:

A + V → Aad B + V → Bad Aad + Bad → AB → 2V

where A and B are the monomers in the gaseous phase, Aad and Bad are the monomers adsorbed
on a site of the surface and V denotes a vacant site of the surface. The FGZ model is symmetric:
the absorption probability, 1/2, and the desorption probability, p, are the same for both reactants
so a unique parameter controls the reaction rate, which is p scaled by the length L of the lattice:
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in one dimension, the scaled parameter [4] is Lp1/2 and in two dimensions, L2p ln(1/p). The
FGZ model was generalized by Clément, Leroux-Hugon and Sander (CLS) [5] to the case of
unequal absorption and desorption probabilities for A and B species. This generalized model
has more flexibility. It displays bistability, like the FGZ model, and also an irreversible phase
transition when only the reactant B is allowed to desorb. The CLS model was studied both
analytically and by Monte Carlo simulations, and a good overall agreement found between the
results from the two methods [5].

Studies of stochastic reaction models put the emphasis on the spatial organization of
the reactants. For instance, the major feature of the FGZ model is the dramatic increase
of the noise level when the (scaled) desorption probability p decreases: at low p, bursts of
reactions are followed by nearly inert stages. This behaviour originates in the formation of
mesoscopic patches of reactants of size �: � ∼ p1/2 in one dimension and � ∼ ln(1/p) in
two dimensions [4]. When � ∼ L, the reaction is controlled by the stochastic evolution from
a nearly A system to a nearly B system. Self-organization of reactants is also observed in
more complex models like the monomer–dimer model introduced by Ziff et al [6] and many
others [7]. By contrast, less attention has been paid to the dynamics of the noise, although this
dynamics lies at the origin of the stochastic character of these reaction processes. In Monte
Carlo simulations, a simple Markov process is used; i.e., desorption is accepted if a random
number is lower than the probability p. In this letter, I address the question of whether the noise
structure may influence the reaction process. Note that the noise in reaction models similar to
the FGZ model may be termed internal, because it originates in the random organization of
the reactants rather than from fluctuations of any of the parameters such as an absorption or a
reaction rate.

A hint as to the importance of the structure of the noise in kinetic reaction models is
given by the insightful papers of Wolf and Kertész [8]. These authors studied a very simple
aggregation model—the Eden model—and showed that a noise-reduction procedure deeply
affects the spatial organization at the boundary of the growing solid and accordingly the growth
dynamics. In the original Eden model, aggregation of an atom hitting the perimeter of the solid
is accepted with a probability p. In the noise-reduced model, a counter is attached to each
perimeter site; a single hit on this site is accepted in the same probabilistic way as in the
original model, but the aggregation of an atom is allowed only after m accepted hits, where
m > 1. The noise reduction amounts to replacing the simple Markov process by a time random
walk (TRW), a walk between the m states of the counter.

The TRW of [8] may be used for the desorption process of the CLS model; however, this
procedure would lack physical justification. I propose instead a method which mimics the
thermally driven escape over a potential barrier. I assume that the adsorbed atom, initially
in its ground state, may be promoted to excited states. At each time step of a Monte Carlo
process, the state of the atom performs either a move toward a higher excited state (i → i + 1)

with a probability δ, δ < 1/2, or a move toward a lower excited state (i → i − 1) with a
probability 1 − δ. When entering the final state, the atom desorbs. Depending on the number
m of internal states, δ is adjusted so as to yield, on average, the desorption probability p. The
desorption dynamics is then controlled by a TRW between the m states of the adsorbed atom.
Two features of this TRW are worthy of notice. In the first place, the second moment of the
distribution of waiting time (WTD) is independent of m and equal to p−1; it may be proved
that either the m = 1 process or m > 1 processes are Poissonian. Secondly, when plotting p

versus δ in a log–log plot for various m, one gets straight lines; that is m plays the role of an
inverse temperature, as surmised by Wolf and Kertész.

I will use this desorption dynamics in the CLS model, limiting myself to the fully
asymmetric case: only the B reactant is allowed to desorb. In [5], one was left with only



Letter to the Editor L21

− 0.01 0.00 0.01 0.02 0.03 0.04
x

0.00

0.10

0.20

0.30
R

ea
ct

io
n 

R
at

e

− 0.001 0.000 0.001 0.002 0.003 0.004
x

0.00

0.10

0.20

0.30

R
ea

ct
io

n 
R

at
e

(a) (b)

Figure 1. Reaction rate as a function of x in two dimensions. Solid curve: MF result; solid circles:
Markov process; solid squares: TRW with two states; solid upward-pointing triangles: TRW with
four states; solid diamonds: TRW with eight states; solid downward-pointing triangles: TRW with
ten states. Dashed curves are guides for the eye. (a) p = 0.01, (b) p = 0.001.

two parameters: p and the ratio of adsorption probabilities

p
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= 1 − x

1 + x

which defines the parameter x. For a given p, a reactive phase is present provided that x is
larger than a critical value xc, xc = xc(p) > 0. For x � xc, all the lattice sites are A occupied
and the reaction rate vanishes: this is an irreversible phase transition towards an absorbing
phase.

I have studied, by Monte Carlo simulations, the way in which the dynamic phase transition
of the CLS model is modified by the introduction of the TRW. I will concentrate on the curve
giving the reaction rate R as a function of x, for two values of p. The generic curve shows
a reaction window, specified by (i) the critical value xc below which the system is in an
absorbing phase, (ii) the value xm of the maximum of R and (iii) the width of the reaction
window, estimated as the width at half-maximum. In figures 1(a) and 1(b), R is plotted as
a function of x for several values of the number of states of the TRW m; note that m = 1,
i.e. the original CLS model, obviously corresponds to a Markov process. Data are given for a
square lattice, and for p = 0.01 and 0.001. These low values of p assure us that desorption is
the slowest process; reaction and absorption are assumed to take place within the unit of time
of the Monte Carlo trial. In these figures, I have also plotted results from mean-field (MF)
theory [5]. As noticed in [5], Monte Carlo results for m = 1 are in agreement with the MF
ones. As m increases, xc and xm decrease. This finding can be understood by considering the
histogram of the WTD for different values of m. These distributions tend to be narrower and to
have a maximum at longer time when m increases. For a plain desorption process, the average
probability of desorption per unit time is independent of m (by construction, i.e. due to the
choice of δ); however, in the presence of reaction the effective WTD has a cut-off, because the
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Figure 2. Scaled reaction rate R∗ as a function of x∗ in two dimensions. Solid circles: Markov
process and p = 0.01; open circles: Markov process and p = 0.001. Solid diamonds: TRW with
four states and p = 0.01; open diamonds: TRW with four states and p = 0.001. Curves are guides
for the eye.

reaction opens a new channel for emptying a lattice site. The effect of this cut-off turns out to
be more severe for m larger than 1. Also the width of the reaction window is lower for larger
m. If one compares in figure 1(b) the R(x) curves for m = 1 and 2, on the one hand, and
those for m = 8 and 10, on the other hand, one notices that the variation of xc with m in the
former case is more important than in the latter case. That is, increasing m no longer has an
effect beyond some limit. This feature is in agreement with the finding of Wolf and Kertész.
A noticeable feature of the MF theory [5] is its scaling property: when x and R are plotted in
scaled units (R∗ = R ln(1/p) and x∗ = 2πx/p ln(1/p)), the critical values x∗

c , the values at
the maximum of R∗, namely x∗

m, and the reaction widths tend to be the same. Interestingly,
this feature is conserved for1 m > 1, as displayed in figure 2 which shows the results for both
values of p and for m = 1 and 4, plotted in scaled units, R∗ as a function of x∗. In figures 3(a)
and 3(b) similar results in one dimension are plotted, for p = 0.01 and 0.001 respectively.
As noticed in [8], there is a significant difference between MF calculations and Monte Carlo
results for m = 1: xc and to a lesser extent xm are larger in Monte Carlo results than in the
theory. Presumably, the decoupling procedure does not properly account for the three-body
space-correlation functions. Increasing m in the TRW tends also to lower xc and xm, but the
difference is less important than in dimension 2.

Finally, I have checked that introducing the TRW does affect the spatial organization of
the reactants, as expected [8]. Early studies of the FGZ model [3, 4, 9] have emphasized the

1 Although this result is surprising—because for m > 1, the R(x) curves depart from the MF ones—it is not fully
unexpected. In the noise-reduced studies of [8], the spatial organization and the dynamics are deeply modified but the
critical exponent stays unaltered.
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Figure 3. Reaction rate as a function of x in one dimension. The key is the same as for figure 1.
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Figure 4. Histograms of the first moment of the cluster-size distributions as a function of cluster
size for a 64 × 64 lattice, p = 0.01. Upper scale: A clusters; lower scale: B clusters. Solid line
with open circles: Markov process; dashed line with solid circles: TRW with eight states. The
A concentration is equal to the B concentration.

importance of the cluster-size distributions. In figure 3, I have plotted histograms of the first
moment of the size distribution of the A and of the B clusters as a function of the size of the
clusters, for m = 1 and 8 and for p = 0.01. In order to ensure that the comparison makes sense,
I have chosen x such that the (average) A and B concentrations are equal; this is associated
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with nearly the maximum of the R(x) curves. The data correspond to averages over 2000
realizations. From this plot, we notice that (i) the A and B distributions are different and (ii)
the TRW favours larger sizes for both A and B clusters.

To summarize, I have shown for a simple situation (transition towards an absorbing phase)
that the introduction of a TRW which mimics the thermally activated desorption process
significantly modifies the phase diagram of the CLS model, which is taken as generic. In
addition, the fact that the number of states of the TRW plays the role of an inverse temperature
is a step towards a more realistic description of a moderately complex reaction process. This
suggests that the noise-reduction technique—a better term is noise-control technique—is not
merely a computational trick to speed up the estimation of critical exponents, but may be
endowed with a physical significance. Applications of this TRW concept to other features of
the CLS model—e.g. the bistable situation, the cluster-size distribution, the output noise or
the dynamics—are in progress.

I gratefully acknowledge stimulating discussions with C Guilpin and A Lemarchand.
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